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Abstract—Recently electromagnetic fault injection (EMFI) 
techniques have been found to have significant implications on 
the security of embedded devices. Unfortunately there is still a 
lack of understanding of EM fault models and countermeasures 
for embedded processors. For the first time, this paper proposes 
an extended fault model based on the concept of critical charge 
and a new EMFI backside methodology based on over-clocking. 
Results show that exact timing of EM pulses can provide reliable 
repeatable instruction replacement faults for specific programs. 
An attack on AES is demonstrated showing that the EM fault 
injection requires on average less than 222 EM pulses and 5.3 
plaintexts to retrieve the full AES key. This research is critical 
for ensuring embedded processors and their instruction set 
architectures are secure and resistant to fault injection attacks.  

Keywords—side channel, fault injection, EM, fault model, 
embedded processor security 

I. INTRODUCTION 

Security is increasingly widespread in many embedded 
devices. The devices themselves must store cryptographic keys 
and be designed to support secure boots, secure processing, etc. 
In addition to correct implementation, the security must be 
resistant to physical attacks. For example electromagnetic 
waves maybe focused onto the device (using EM pulses) 
causing a change in some computation or data within the 
device (referred to as an EM fault injection attack). Although 
research has examined fault injection attacks for several 
decades, there remains limited understanding of the fault 
models of embedded processors and how countermeasures can 
be designed. Fault injection attacks have important 
consequences on embedded systems and thus quantization of 
the threat is important. For EM fault injection attacks, the 
number of EM pulses required to launch an attack would also 
be useful to quantize. In theory if x fault injections may reveal 
the complete key and on average y EM pulses are required 
before a fault injection is possible, then the secret key lifetime 
must support on average less than xy invocations of the 
cryptographic algorithm to prevent a successful attack. Since 
an increasing number of devices are flipchip packaged, the 
susceptibility of EMFI to the backside is also important. 

II. PREVIOUS RESEARCH  

Fault injection attacks include power or clock glitching, 
electromagnetic pulse injection, laser injection, and others. In 
general electromagnetic fault injection attacks are lower cost 

and have fewer requirements other than access to chip or de-
capsulated die. Some earlier fault injection techniques included 
constant under-voltaging [5] which produced reset faults in 
memory loads independent of address values. This research 
was likely the first to suggest instruction replacement fault 
types. Researchers in [7,8] have suggested that forward body 
biasing injection (FBBI) would have better spatial resolution 
than that achieved with an EM pulse on the backside of the IC, 
however only approximately 2% of faults were exploitable. 
Researchers in [1] have proposed a timing fault model where 
the coupling between the EM pulse and power-ground network 
temporarily reduces the power supply, increases the delay, and 
finally causes a setup time constraint violation. Later in [2] a 
sampling fault model was proposed suggesting the EM pulse 
temporarily alters the voltage of several nodes in the circuit 
during some time and after this time interval, the chip quickly 
recovers its original state, suggesting the faults should be 
injected near the clock edge to affect values latched into 
registers and memory. Research in [3] observed bit set faults 
and suggested metastability as a cause during instruction loads 
from flash. Other researchers have examined EM fault 
injection effects on clock glitching [15], DRAM chips [13], or 
using harmonic EM fault injection [16]. Real attacks using EM 
fault injection have been demonstrated on secure boot 
functionality indicating instruction replacement faults [17]. 
Most cryptographic countermeasures assume data is faulted 
with zeros or random values [6] or instruction skip faults [10] 
accounting for only a limited set of observed fault injections 
[11]. There remains a limited in-depth analysis of processor 
based faults, including limited quantization of attack difficulty 
in terms of number of EM pulses required. Additionally there 
remains a lack of understanding of fault models and fault types. 
In this paper a fault model will be defined as the mechanism 
explaining how a fault may occur and fault types refer to 
specific instructions (faulty instruction replacement) which 
model the faulty behavior of the targeted fault-injected 
instruction.  

III. EXPERIMENTAL METHODOLOGY AND RESULTS 

The experimental setup and methodology along with 
empirical results on an embedded microcontroller are described 
in this section. The proposed charge-based fault model derived 
empirically along with in-depth analysis and quantization of 
the faulty instruction replacement and an AES attack are 
presented. 



A. EMFI Setup and Methodology 

Experimental setup was based on a low cost desktop CNC 
machine (approx. $2.5K USD), an EM pulse generator and EM 
probe. The CNC machine was retrofitted to hold the EM probe 
and enabled accurate xyz placement with a resolution of 12.7 
um. The CNC machine also provided automated backside de-
capsulation of the processor. The EM pulse generation system 
used was the EMV Langer Burst power station 202 [12] (EM 
pulse has approximate 2ns rise time). The EM probe tip 
(approx. 0.5um) was placed approximately 0.8mm above the 
exposed backside die surface of the processor. The device 
under analysis is a backside de-capsulated PIC16F687 (chosen 
due to the simple 14-bit opcodes and DIP package with die size 
approximately 2.3mm X 2.6mm). The PIC16F687 utilizes 4 Q 
clock cycles per instruction cycle. The instruction cycles utilize 
a 2-stage pipeline (fetch and execute instruction stages). The 
PIC16F687 was (over)clocked with an external 52MHz clock 
(supplied by a function generator) and was used to generate an 
external trigger to the EM system. The EM pulses utilized for 
fault injection were 500V single positive pulses, unless 
otherwise stated. All programs were written in assembly 
language to enable detailed timing analysis. Due to the lack of 
a high speed debugger for the processor, empirical analysis 
was performed using assembly code design to confirm the 
presence and details of injected faults. Parameters analyzed for 
all experiments included timing of EM pulse, % of rounds 
which had a specific fault and statistics on the number of EM 
pulses required to inject the first fault. Initially the EM pulse 
injection was scanned over a test code sequence in 10ns and 
shorter intervals in order to find specific EM pulse times where 
faults were successful. The fault injection experiments utilized 
a master python script (to control/synchronize the CNC 
machine, function generator, EM pulse generator and PIC 
programmer) in addition to assembly programs which executed 
a set number of rounds. In each round a loop of code was 
responsible for generating an output trigger signal and 
executing a series of instructions, one of which was the target 
of the fault injection. The subsequent instructions in the loop 
after the target instruction were designed to handle fault 
detection and analysis.  

Faults in both data and control were detected in software in 
each loop through several iterations of assembly design until 
all faults were accountable. Generally data-based faults were 
detected from the data values written or not written to sRAM, 
registers or status bits. For example, if the target instruction 
were to store data from a register (or through ALU) to 
memory, the program would initially examine the register and 
memory data values (or status bits). If an unexpected data 
value was found, the program would jump to a fault handling 
routine. The fault handling routine would place a flag data 
value in memory and then process the fault. Flag data was 
utilized to check for control faults. For example if data was not 
written as expected and flag data was not set, yet the program 
executed the fault handling, it was likely a control type of fault 
was injected. In this case further flags were placed into the 
code to help trace the control path of the faulty instruction. 

 The best placement of the EM probe relative to the die was 
found using a memory writing program synchronized with the 
CNC machine. After every 10 rounds, the probe was moved to 

a different xy location, gradually scanning over the entire area 
of the die. During each round fault injections and other 
parameters were recorded. Initially the probe tip was placed 
approximately over a corner of the die. Then, for the first scan 
over the die, a low resolution was used to find a sensitive area 
where faults are more likely to be injected. Fig. 1. illustrates 
this coarse grained shmoo plot over the die region using 
different magnitudes of  EM pulse voltages. Next, a more 
detailed scan with a higher resolution was performed on the 
sensitive region identified in the first scan. The best probe 
location (based on large number of faults with low standard 
deviations) was utilized for all subsequent experiments.  

 Further analysis of the memory write program, indicated 
that the fault (a single bit reset) was actually related to the 
prefetch of the instruction which followed the memory write, 
specifically movlw, which loaded an immediate data value into 
a temporary working register, the w register. This was 
empirically confirmed by inserting several nops in between the 
memory write and the movlw (and adjusting the trigger signal 
accordingly so that the EM pulse occurred during the prefetch 
of movlw). Faults were largely successfully injected near a 
specific Q cycle edge in the instruction prefetch stage (likely 
the end of the Q4 cycle due to 50ns typical off-chip delay [9], 
likely corrupting the instruction register load during the start of 
following execution stage [9]). Unfortunately this could not be 
verified beyond our experimental results since it is well known 
that contents of the instruction register are not available. 

a) b)  c)  

Fig. 1. Coarse grained shmoo plots of # rounds with fault injection of movlw 
0x00 over die using 70V a), 150V b), and 500V c) EM pulse voltages.  

B. Charge-based Model 

It was empirically observed, similar to [2], that fault 
injection was possible only during a specific timing window 
near a specific clock edge. However unlike [2], when the clock 
frequency was reduced, no fault injection was possible 
throughout the clock period. Further experimentation indicated 
that some lower clock frequencies could only be made 
susceptible to fault injection with a suitable reduction in Vdd, 
as shown in Table I. Note all explored combinations of Vdd 
and clock frequency were fully functional without fault 
injection. The delays in columns D1 to D4 of Table I represent 
the delay between the respective clock edge and the EM pulse. 
A positive delay means the EM pulse occurs before the specific 
clock edge. For example, Dx is the delay between the EM pulse 
and a rising or falling clock edge x, where x = 1,2,3,4 are 
consecutive falling, rising, falling, rising edges of a clock 
respectively (representing 1.5 clock cycles). In the first row of 
Table I, the EM pulse which occurs 3.7ns before the first 
falling clock edge D1, produces a fault at 52MHz, 5V (see first 
column). However, in row 2, when the EM pulse occurs again 
at 3.7ns before the same first falling clock edge D1, no fault 
occurs at 46.02MHz, 5V. Similarly for the next 3 rows where 
the EM pulse has the same delay distance from the other 



underlined clock edges, with the slower clock frequencies no 
fault is injected at 5V. Next, for each EM pulse timing, the 
supply voltage, Vdd, was continually reduced by 0.1V until the 
fault could be injected, as shown in the second column of 
Table I, empirically demonstrating that at lower clock 
frequencies only with lower power supply can EM faults be 
injected. 

A possible theoretical explanation for the observed 
behavior can be obtained through examining the charge-based 
model. Consider a circuit node which under normal operating 
conditions charges from a ‘0’ to a ‘1’. At 5V with slower clock 
frequencies, a maximum amount charge is built up on the 
capacitor at the circuit node. Although the EM pulse can 
modify the charge (via noise or power-ground network), it 
cannot reduce a sufficient amount of charge from accumulating 
on the node to cause a ‘0’ to occur (when latched into a 
flipflop). When operating with a high clock frequency (e.g. 
overclocking) at 5V, the capacitors are charged just as quickly 
but for a shorter clock period duration, hence the total charge 
accumulated on the circuit node is less (and may only be just 
over the threshold to reach a ‘1’ , also referred to as low swing 
signals). When EM pulses are applied to this node, since the 
capacitor is not fully charged, the EM pulse injection is able to 
disturb a sufficient amount of charge to change the bit value 
(when latched into a flipflop), such that the ‘1’ threshold is not 
reached and thus the bit becomes a ‘0’. The amount of charge 
displacement required to change the bit value is much less than 
the case where a slower clock frequency is utilized. When 
slower clock frequencies are employed with a reduction in 
Vdd, the capacitance is charged slower (due to lower Vdd), and 
hence has less charge at the end of the clock cycle. Thus when 
the EM pulse is applied, again less charge needs to be 
disturbed in order to prevent the bit from reaching the ‘1’ 
(when latched into a flipflop). In effect the proposed extended 
fault model is based on the minimum amount of charge 
required to change the normal behavior of a circuit at a 
sensitive node. This amount of charge is often referred to as 
critical charge in the field of single event upsets [4]. At low 
clock frequencies with reduced Vdd or at high clock 
frequencies, the critical charge is smaller and thus the circuit is 
more susceptible to EM fault injection. 

C. Instruction Replaced Faults 

Table II illustrates the replaced faulty instructions (column 
2) which replaced the target instruction (column 1) as a result 
of successful fault injection. A total of 340 rounds were 
utilized in the experiments of Table II. The time between the 
EM pulse and the end of the appropriate Q cycle was 15.23ns 
for all instructions except for first 2 rows of table which 
utilized delays of 12.15ns and 16ns. For example, in the first 
row, the target instruction was movlw 0x80 and the EM pulse 
was 12.15ns from the end of the appropriate Q cycle. The EM 
pulse caused the least significant bit of the data value pointed 
to by the file select register (indirect address) to be reset (to 0). 
The only instruction to achieve this was bcf INDF,0. This is 
completely unrelated to the function of the target instruction 
(which was loading the value 0x80 into the w register) thus 
further supporting the notion that likely the fault is affecting 

the load of the instruction register. For a targeted instruction in 
a specific code sequence, a small variation of the EM pulse 
timing often led to quite different faulty instructions, as seen 
in rows 1 and 2 of Table II.  

TABLE I.  FAULT INJECTION (FI) VS CLOCK FREQUENCY AND VDD 

FI/5V FI/Vdd 
Clk.Freq 

(MHz) 
Delay (ns) 

D1 D2 D3 D4 

Yes Yes/5V 52 3.7 13.3 22.9 32.5 

No Yes/4.2V 46.02 3.7 14.6 25.4 36.3 

No Yes/4.2V 46.18 2.5 13.3 24.1 35 

No Yes/4.4V 46.33 1.3 12.1 22.9 33.7 

No Yes/4.4V 46.48 0.3 11 21.8 32.5 

In the last 4 rows where the targeted instruction is xorwf 
0x20, f again different faulty instructions were found even 
though the delay of the EM pulse with respect to the prefetch 
of the target instrution was the same. In case a1 and a2, the 
target instruction resided at the same address, and the exact 
same code sequence was used except for the immediate 3 
instructions before the target instruction. In case a1 the 3 
instructions preceding the target instruction are 2 nop’s and 
movf 0x30,w , whereas in case a2 the target instruction is 
preceded by movf, xorwf,f and movf 0x30,w type instructions. 
Similarly for cases b1 and b2 the target instruction is preceded 
by the same two sequences as in a1 and a2 respectively, but 
this code is embedded within a complete AES program, not a 
test program. In the last column of Table II, one can see that in 
all cases, except in one case, the bits are more likely to be 
reset and not set. In other words the effect of the EM pulse is 
mostly likely to cause opcode bits to transition from 1 to 0.  

In all cases the faulty instruction opcodes appeared to be 
uncorrelated to opcode values from preceding instructions. 
Further experimentation revealed that address bits within the 
opcode (typically b6..b0) were also not susceptible to fault 
injection. Negative EM pulses also injected faults but only 
after increasing the delay to 25.23ns.  The variance of fault 
injections was also quantized, indicating that standard 
deviations were under 2%. For example in row 3 of table II, 
the NOP replaced instruction occurred 56.5% +/- 2.8% (2std). 
The averge number of EM pulses before the first NOP fault 
was injected was at minimum 1 EM pulse and at most 11 EM 
pulses.  

D. AES attack 

The complete AES code was utilized to launch a fault 
injection attack to retrieve an AES key byte. The attack 
assumes the correct and faulty ciphertext is available, so the 
attacker knows if a fault has been injected or not, but the 
plaintext is not known (random). The xorwf 0x20,f (w xor 
f=>f) instruction of the last round, which computes the 
exclusive or of key byte n (stored in register w) with the AES 
state (initially stored in memory at address f) was targeted. 
Note that if faulty instruction movwf 0x20 (w=>f) occurs key 
byte n (k) will be output in the faulty ciphertext byte. 
Otherwise if faulty instruction nop occurs, the AES state (s) 



will be output in the faulty ciphertext byte. In this later case the 
result of the exclusive-or of this faulty ciphertext (s) with the 
correct ciphertext (= [s xor k]) will reveal the AES key byte (= 
s xor [s xor k]). Since either faulty instruction will reveal the 
key byte, the attack maintains a list of pairs, one per fault 
injection, where each pair is [faulty-ciphertext-byte , exclusive-
or]. The list grows until two pairs have either the same faulty 
ciphertext byte or same exclusive-or value, in which case the 
potential correct key byte has been found. We denote this as a 
potential correct key byte since there remains a small 
probability that an incorrect key may be found (since there are 
only 256 possible byte values). Empirical results of fault 
injection attacks on the complete AES algorithm executing on 
the processor were obtained. Using this attack, out of a total of 
16 different AES keys, 11 keys were correctly identified. 

TABLE II.  CODE SEQUENCE EFFECTS ON FAULT INJECTION AT 52MHZ 

Target Instr  
Statistics 

Replaced faulty 
instruction 

Frequency 
Occurence 

Opcode Bits 
reset[set] 

movlw 0x80 d1 bcf INDF, 0 98.4% b13, b7 

movlw 0x80 d1 
movwf  INDF 
goto 0x80 

56.4% 
42.3% 

b13,b12 
b12[b11]  

xorwf 0x20,f a1 
iorwf 0x20,w 
NOP 
iorwf 0x20,f 

40.3% 
57.9% 
1.8% 

b9,b7 
b10,b9,b7 

b9 

xorwf 0x20,f b1 
subwf 0x20,f 
movwf 0x20 

65.8% 
34.1% 

b10 
b10,b9 

xorwf 0x20,f a2 
iorwf 0x20,w 
nop 
xorwf 0x20,w 

60% 
35% 
2.6% 

b9,b7 
b10,b9,b7 

b7 

xorwf 0x20,f b2 iorwf 0x20,f 98.7% b9 

d1 Delay of 12.15ns and 16ns for 1st/2nd row.  a1,a2,b1,b2 Instruction embedded within diff. code seq. 

The number of EM pulses required to obtain a single correct 
AES 128-bit key varied from 134 to 453, with an average of 
222 and standard deviation of 81. The statistics shown in Table 
II rows b1 and b2, indicated that possibly with a different 
implementation of AES, the faulty instruction of the targeted 
xorwf 0x20,f may also have been iorwf 0x20,f with 98.7% 
frequency.  In this case an AES attack would also be possible, 
by monitoring the faulty ciphertext generated from executing 
different plaintexts, recording bits of the targeted ciphertext 
byte which become ‘0’.  In both attack cases and unlike 
previous research, the attack does not make assumptions that 
the fault model is a bit flip, random byte/word, or instruction 
skip.  

IV. DISCUSSIONS AND CONCLUSIONS 

It is well known that as technologies progress the critical 
charge also reduces. Hence it is possible that the EM pulse was 
not strong enough to disturb the larger critical charge at slower 
clock frequencies. The xorwf,f instruction researched in this 
paper was shown to have a significant impact on the AES 
security application. Although previous research had observed 
the key byte appearing in the faulty ciphertext, only 2 out of 16 
key bytes had this type of fault [1] and the suggested attack 
algorithm did not include handling of the nop faulty 
instruction. In section III.D a complete attack on an AES key 
byte in a real implementation of AES was performed. Since the 
number of plaintexts required was extremely low, it is expected 

that with higher EM pulse voltage or more accurate EM pulse 
timing, the number of EM pulses used in the attack may be 
reduced further. Attacks using fault injection of other 
instructions, such as the movlw instruction, could likely also be 
exploited in applications such as secure boot where the 
corresponding faulty instruction goto (2nd row of Table II) 
could potentially skip authentication checks during secure 
boot. For the first time an extended charge-based fault model is 
presented for backside EMFI and validated empirically. Unlike 
previous research, the IC backside is shown to be very 
susceptible to localized and repeatable EM fault injection. For 
the first time it was shown that a real implementation of AES 
can be attacked in a simple manner. This research is important 
for improving resilience and countermeasures for fault 
injection attacks which are critical for preventing future EM 
fault injection attacks. The authors would like to thank Mustafa 
Faraj for useful discussions and development of some of the 
tools used in these experiments. The research is supported by 
funding in part by grants from NSERC and XtremeEDA. 
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