

Methodology for EM Fault Injection: Charge-based
Fault Model

Haohao Liao
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada N2L 3G1
haohao.liao@uwaterloo.ca

Catherine Gebotys
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada N2L 3G1

cgebotys@uwaterloo.ca

Abstract—Recently electromagnetic fault injection (EMFI)
techniques have been found to have significant implications on
the security of embedded devices. Unfortunately there is still a
lack of understanding of EM fault models and countermeasures
for embedded processors. For the first time, this paper proposes
an extended fault model based on the concept of critical charge
and a new EMFI backside methodology based on over-clocking.
Results show that exact timing of EM pulses can provide reliable
repeatable instruction replacement faults for specific programs.
An attack on AES is demonstrated showing that the EM fault
injection requires on average less than 222 EM pulses and 5.3
plaintexts to retrieve the full AES key. This research is critical
for ensuring embedded processors and their instruction set
architectures are secure and resistant to fault injection attacks.

Keywords—side channel, fault injection, EM, fault model,
embedded processor security

I. INTRODUCTION

Security is increasingly widespread in many embedded
devices. The devices themselves must store cryptographic keys
and be designed to support secure boots, secure processing, etc.
In addition to correct implementation, the security must be
resistant to physical attacks. For example electromagnetic
waves maybe focused onto the device (using EM pulses)
causing a change in some computation or data within the
device (referred to as an EM fault injection attack). Although
research has examined fault injection attacks for several
decades, there remains limited understanding of the fault
models of embedded processors and how countermeasures can
be designed. Fault injection attacks have important
consequences on embedded systems and thus quantization of
the threat is important. For EM fault injection attacks, the
number of EM pulses required to launch an attack would also
be useful to quantize. In theory if x fault injections may reveal
the complete key and on average y EM pulses are required
before a fault injection is possible, then the secret key lifetime
must support on average less than xy invocations of the
cryptographic algorithm to prevent a successful attack. Since
an increasing number of devices are flipchip packaged, the
susceptibility of EMFI to the backside is also important.

II. PREVIOUS RESEARCH

Fault injection attacks include power or clock glitching,
electromagnetic pulse injection, laser injection, and others. In
general electromagnetic fault injection attacks are lower cost

and have fewer requirements other than access to chip or de-
capsulated die. Some earlier fault injection techniques included
constant under-voltaging [5] which produced reset faults in
memory loads independent of address values. This research
was likely the first to suggest instruction replacement fault
types. Researchers in [7,8] have suggested that forward body
biasing injection (FBBI) would have better spatial resolution
than that achieved with an EM pulse on the backside of the IC,
however only approximately 2% of faults were exploitable.
Researchers in [1] have proposed a timing fault model where
the coupling between the EM pulse and power-ground network
temporarily reduces the power supply, increases the delay, and
finally causes a setup time constraint violation. Later in [2] a
sampling fault model was proposed suggesting the EM pulse
temporarily alters the voltage of several nodes in the circuit
during some time and after this time interval, the chip quickly
recovers its original state, suggesting the faults should be
injected near the clock edge to affect values latched into
registers and memory. Research in [3] observed bit set faults
and suggested metastability as a cause during instruction loads
from flash. Other researchers have examined EM fault
injection effects on clock glitching [15], DRAM chips [13], or
using harmonic EM fault injection [16]. Real attacks using EM
fault injection have been demonstrated on secure boot
functionality indicating instruction replacement faults [17].
Most cryptographic countermeasures assume data is faulted
with zeros or random values [6] or instruction skip faults [10]
accounting for only a limited set of observed fault injections
[11]. There remains a limited in-depth analysis of processor
based faults, including limited quantization of attack difficulty
in terms of number of EM pulses required. Additionally there
remains a lack of understanding of fault models and fault types.
In this paper a fault model will be defined as the mechanism
explaining how a fault may occur and fault types refer to
specific instructions (faulty instruction replacement) which
model the faulty behavior of the targeted fault-injected
instruction.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

The experimental setup and methodology along with
empirical results on an embedded microcontroller are described
in this section. The proposed charge-based fault model derived
empirically along with in-depth analysis and quantization of
the faulty instruction replacement and an AES attack are
presented.

A. EMFI Setup and Methodology

Experimental setup was based on a low cost desktop CNC
machine (approx. $2.5K USD), an EM pulse generator and EM
probe. The CNC machine was retrofitted to hold the EM probe
and enabled accurate xyz placement with a resolution of 12.7
um. The CNC machine also provided automated backside de-
capsulation of the processor. The EM pulse generation system
used was the EMV Langer Burst power station 202 [12] (EM
pulse has approximate 2ns rise time). The EM probe tip
(approx. 0.5um) was placed approximately 0.8mm above the
exposed backside die surface of the processor. The device
under analysis is a backside de-capsulated PIC16F687 (chosen
due to the simple 14-bit opcodes and DIP package with die size
approximately 2.3mm X 2.6mm). The PIC16F687 utilizes 4 Q
clock cycles per instruction cycle. The instruction cycles utilize
a 2-stage pipeline (fetch and execute instruction stages). The
PIC16F687 was (over)clocked with an external 52MHz clock
(supplied by a function generator) and was used to generate an
external trigger to the EM system. The EM pulses utilized for
fault injection were 500V single positive pulses, unless
otherwise stated. All programs were written in assembly
language to enable detailed timing analysis. Due to the lack of
a high speed debugger for the processor, empirical analysis
was performed using assembly code design to confirm the
presence and details of injected faults. Parameters analyzed for
all experiments included timing of EM pulse, % of rounds
which had a specific fault and statistics on the number of EM
pulses required to inject the first fault. Initially the EM pulse
injection was scanned over a test code sequence in 10ns and
shorter intervals in order to find specific EM pulse times where
faults were successful. The fault injection experiments utilized
a master python script (to control/synchronize the CNC
machine, function generator, EM pulse generator and PIC
programmer) in addition to assembly programs which executed
a set number of rounds. In each round a loop of code was
responsible for generating an output trigger signal and
executing a series of instructions, one of which was the target
of the fault injection. The subsequent instructions in the loop
after the target instruction were designed to handle fault
detection and analysis.

Faults in both data and control were detected in software in
each loop through several iterations of assembly design until
all faults were accountable. Generally data-based faults were
detected from the data values written or not written to sRAM,
registers or status bits. For example, if the target instruction
were to store data from a register (or through ALU) to
memory, the program would initially examine the register and
memory data values (or status bits). If an unexpected data
value was found, the program would jump to a fault handling
routine. The fault handling routine would place a flag data
value in memory and then process the fault. Flag data was
utilized to check for control faults. For example if data was not
written as expected and flag data was not set, yet the program
executed the fault handling, it was likely a control type of fault
was injected. In this case further flags were placed into the
code to help trace the control path of the faulty instruction.

 The best placement of the EM probe relative to the die was
found using a memory writing program synchronized with the
CNC machine. After every 10 rounds, the probe was moved to

a different xy location, gradually scanning over the entire area
of the die. During each round fault injections and other
parameters were recorded. Initially the probe tip was placed
approximately over a corner of the die. Then, for the first scan
over the die, a low resolution was used to find a sensitive area
where faults are more likely to be injected. Fig. 1. illustrates
this coarse grained shmoo plot over the die region using
different magnitudes of EM pulse voltages. Next, a more
detailed scan with a higher resolution was performed on the
sensitive region identified in the first scan. The best probe
location (based on large number of faults with low standard
deviations) was utilized for all subsequent experiments.

 Further analysis of the memory write program, indicated
that the fault (a single bit reset) was actually related to the
prefetch of the instruction which followed the memory write,
specifically movlw, which loaded an immediate data value into
a temporary working register, the w register. This was
empirically confirmed by inserting several nops in between the
memory write and the movlw (and adjusting the trigger signal
accordingly so that the EM pulse occurred during the prefetch
of movlw). Faults were largely successfully injected near a
specific Q cycle edge in the instruction prefetch stage (likely
the end of the Q4 cycle due to 50ns typical off-chip delay [9],
likely corrupting the instruction register load during the start of
following execution stage [9]). Unfortunately this could not be
verified beyond our experimental results since it is well known
that contents of the instruction register are not available.

a) b) c)

Fig. 1. Coarse grained shmoo plots of # rounds with fault injection of movlw
0x00 over die using 70V a), 150V b), and 500V c) EM pulse voltages.

B. Charge-based Model

It was empirically observed, similar to [2], that fault
injection was possible only during a specific timing window
near a specific clock edge. However unlike [2], when the clock
frequency was reduced, no fault injection was possible
throughout the clock period. Further experimentation indicated
that some lower clock frequencies could only be made
susceptible to fault injection with a suitable reduction in Vdd,
as shown in Table I. Note all explored combinations of Vdd
and clock frequency were fully functional without fault
injection. The delays in columns D1 to D4 of Table I represent
the delay between the respective clock edge and the EM pulse.
A positive delay means the EM pulse occurs before the specific
clock edge. For example, Dx is the delay between the EM pulse
and a rising or falling clock edge x, where x = 1,2,3,4 are
consecutive falling, rising, falling, rising edges of a clock
respectively (representing 1.5 clock cycles). In the first row of
Table I, the EM pulse which occurs 3.7ns before the first
falling clock edge D1, produces a fault at 52MHz, 5V (see first
column). However, in row 2, when the EM pulse occurs again
at 3.7ns before the same first falling clock edge D1, no fault
occurs at 46.02MHz, 5V. Similarly for the next 3 rows where
the EM pulse has the same delay distance from the other

underlined clock edges, with the slower clock frequencies no
fault is injected at 5V. Next, for each EM pulse timing, the
supply voltage, Vdd, was continually reduced by 0.1V until the
fault could be injected, as shown in the second column of
Table I, empirically demonstrating that at lower clock
frequencies only with lower power supply can EM faults be
injected.

A possible theoretical explanation for the observed
behavior can be obtained through examining the charge-based
model. Consider a circuit node which under normal operating
conditions charges from a ‘0’ to a ‘1’. At 5V with slower clock
frequencies, a maximum amount charge is built up on the
capacitor at the circuit node. Although the EM pulse can
modify the charge (via noise or power-ground network), it
cannot reduce a sufficient amount of charge from accumulating
on the node to cause a ‘0’ to occur (when latched into a
flipflop). When operating with a high clock frequency (e.g.
overclocking) at 5V, the capacitors are charged just as quickly
but for a shorter clock period duration, hence the total charge
accumulated on the circuit node is less (and may only be just
over the threshold to reach a ‘1’ , also referred to as low swing
signals). When EM pulses are applied to this node, since the
capacitor is not fully charged, the EM pulse injection is able to
disturb a sufficient amount of charge to change the bit value
(when latched into a flipflop), such that the ‘1’ threshold is not
reached and thus the bit becomes a ‘0’. The amount of charge
displacement required to change the bit value is much less than
the case where a slower clock frequency is utilized. When
slower clock frequencies are employed with a reduction in
Vdd, the capacitance is charged slower (due to lower Vdd), and
hence has less charge at the end of the clock cycle. Thus when
the EM pulse is applied, again less charge needs to be
disturbed in order to prevent the bit from reaching the ‘1’
(when latched into a flipflop). In effect the proposed extended
fault model is based on the minimum amount of charge
required to change the normal behavior of a circuit at a
sensitive node. This amount of charge is often referred to as
critical charge in the field of single event upsets [4]. At low
clock frequencies with reduced Vdd or at high clock
frequencies, the critical charge is smaller and thus the circuit is
more susceptible to EM fault injection.

C. Instruction Replaced Faults

Table II illustrates the replaced faulty instructions (column
2) which replaced the target instruction (column 1) as a result
of successful fault injection. A total of 340 rounds were
utilized in the experiments of Table II. The time between the
EM pulse and the end of the appropriate Q cycle was 15.23ns
for all instructions except for first 2 rows of table which
utilized delays of 12.15ns and 16ns. For example, in the first
row, the target instruction was movlw 0x80 and the EM pulse
was 12.15ns from the end of the appropriate Q cycle. The EM
pulse caused the least significant bit of the data value pointed
to by the file select register (indirect address) to be reset (to 0).
The only instruction to achieve this was bcf INDF,0. This is
completely unrelated to the function of the target instruction
(which was loading the value 0x80 into the w register) thus
further supporting the notion that likely the fault is affecting

the load of the instruction register. For a targeted instruction in
a specific code sequence, a small variation of the EM pulse
timing often led to quite different faulty instructions, as seen
in rows 1 and 2 of Table II.

TABLE I. FAULT INJECTION (FI) VS CLOCK FREQUENCY AND VDD

FI/5V FI/Vdd
Clk.Freq

(MHz)
Delay (ns)

D1 D2 D3 D4

Yes Yes/5V 52 3.7 13.3 22.9 32.5

No Yes/4.2V 46.02 3.7 14.6 25.4 36.3

No Yes/4.2V 46.18 2.5 13.3 24.1 35

No Yes/4.4V 46.33 1.3 12.1 22.9 33.7

No Yes/4.4V 46.48 0.3 11 21.8 32.5

In the last 4 rows where the targeted instruction is xorwf
0x20, f again different faulty instructions were found even
though the delay of the EM pulse with respect to the prefetch
of the target instrution was the same. In case a1 and a2, the
target instruction resided at the same address, and the exact
same code sequence was used except for the immediate 3
instructions before the target instruction. In case a1 the 3
instructions preceding the target instruction are 2 nop’s and
movf 0x30,w , whereas in case a2 the target instruction is
preceded by movf, xorwf,f and movf 0x30,w type instructions.
Similarly for cases b1 and b2 the target instruction is preceded
by the same two sequences as in a1 and a2 respectively, but
this code is embedded within a complete AES program, not a
test program. In the last column of Table II, one can see that in
all cases, except in one case, the bits are more likely to be
reset and not set. In other words the effect of the EM pulse is
mostly likely to cause opcode bits to transition from 1 to 0.

In all cases the faulty instruction opcodes appeared to be
uncorrelated to opcode values from preceding instructions.
Further experimentation revealed that address bits within the
opcode (typically b6..b0) were also not susceptible to fault
injection. Negative EM pulses also injected faults but only
after increasing the delay to 25.23ns. The variance of fault
injections was also quantized, indicating that standard
deviations were under 2%. For example in row 3 of table II,
the NOP replaced instruction occurred 56.5% +/- 2.8% (2std).
The averge number of EM pulses before the first NOP fault
was injected was at minimum 1 EM pulse and at most 11 EM
pulses.

D. AES attack

The complete AES code was utilized to launch a fault
injection attack to retrieve an AES key byte. The attack
assumes the correct and faulty ciphertext is available, so the
attacker knows if a fault has been injected or not, but the
plaintext is not known (random). The xorwf 0x20,f (w xor
f=>f) instruction of the last round, which computes the
exclusive or of key byte n (stored in register w) with the AES
state (initially stored in memory at address f) was targeted.
Note that if faulty instruction movwf 0x20 (w=>f) occurs key
byte n (k) will be output in the faulty ciphertext byte.
Otherwise if faulty instruction nop occurs, the AES state (s)

will be output in the faulty ciphertext byte. In this later case the
result of the exclusive-or of this faulty ciphertext (s) with the
correct ciphertext (= [s xor k]) will reveal the AES key byte (=
s xor [s xor k]). Since either faulty instruction will reveal the
key byte, the attack maintains a list of pairs, one per fault
injection, where each pair is [faulty-ciphertext-byte , exclusive-
or]. The list grows until two pairs have either the same faulty
ciphertext byte or same exclusive-or value, in which case the
potential correct key byte has been found. We denote this as a
potential correct key byte since there remains a small
probability that an incorrect key may be found (since there are
only 256 possible byte values). Empirical results of fault
injection attacks on the complete AES algorithm executing on
the processor were obtained. Using this attack, out of a total of
16 different AES keys, 11 keys were correctly identified.

TABLE II. CODE SEQUENCE EFFECTS ON FAULT INJECTION AT 52MHZ

Target Instr
Statistics

Replaced faulty
instruction

Frequency
Occurence

Opcode Bits
reset[set]

movlw 0x80 d1 bcf INDF, 0 98.4% b13, b7

movlw 0x80 d1
movwf INDF
goto 0x80

56.4%
42.3%

b13,b12
b12[b11]

xorwf 0x20,f a1
iorwf 0x20,w
NOP
iorwf 0x20,f

40.3%
57.9%
1.8%

b9,b7
b10,b9,b7

b9

xorwf 0x20,f b1
subwf 0x20,f
movwf 0x20

65.8%
34.1%

b10
b10,b9

xorwf 0x20,f a2
iorwf 0x20,w
nop
xorwf 0x20,w

60%
35%
2.6%

b9,b7
b10,b9,b7

b7

xorwf 0x20,f b2 iorwf 0x20,f 98.7% b9

d1 Delay of 12.15ns and 16ns for 1st/2nd row. a1,a2,b1,b2 Instruction embedded within diff. code seq.

The number of EM pulses required to obtain a single correct
AES 128-bit key varied from 134 to 453, with an average of
222 and standard deviation of 81. The statistics shown in Table
II rows b1 and b2, indicated that possibly with a different
implementation of AES, the faulty instruction of the targeted
xorwf 0x20,f may also have been iorwf 0x20,f with 98.7%
frequency. In this case an AES attack would also be possible,
by monitoring the faulty ciphertext generated from executing
different plaintexts, recording bits of the targeted ciphertext
byte which become ‘0’. In both attack cases and unlike
previous research, the attack does not make assumptions that
the fault model is a bit flip, random byte/word, or instruction
skip.

IV. DISCUSSIONS AND CONCLUSIONS

It is well known that as technologies progress the critical
charge also reduces. Hence it is possible that the EM pulse was
not strong enough to disturb the larger critical charge at slower
clock frequencies. The xorwf,f instruction researched in this
paper was shown to have a significant impact on the AES
security application. Although previous research had observed
the key byte appearing in the faulty ciphertext, only 2 out of 16
key bytes had this type of fault [1] and the suggested attack
algorithm did not include handling of the nop faulty
instruction. In section III.D a complete attack on an AES key
byte in a real implementation of AES was performed. Since the
number of plaintexts required was extremely low, it is expected

that with higher EM pulse voltage or more accurate EM pulse
timing, the number of EM pulses used in the attack may be
reduced further. Attacks using fault injection of other
instructions, such as the movlw instruction, could likely also be
exploited in applications such as secure boot where the
corresponding faulty instruction goto (2nd row of Table II)
could potentially skip authentication checks during secure
boot. For the first time an extended charge-based fault model is
presented for backside EMFI and validated empirically. Unlike
previous research, the IC backside is shown to be very
susceptible to localized and repeatable EM fault injection. For
the first time it was shown that a real implementation of AES
can be attacked in a simple manner. This research is important
for improving resilience and countermeasures for fault
injection attacks which are critical for preventing future EM
fault injection attacks. The authors would like to thank Mustafa
Faraj for useful discussions and development of some of the
tools used in these experiments. The research is supported by
funding in part by grants from NSERC and XtremeEDA.

REFERENCES

[1] A.Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic

transient faults injection on a hardware and a software implementations
of AES,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2012 Workshop on, pp. 7-15, IEEE, 2012.

[2] S.Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault
injection: the curse of flip-flops,” Jnl of Crypt Eng, pp. 1-15, 2016.

[3] N.Moro, et.al. “Electromagnetic fault injection: towards a fault model on
a 32-bit microcontroller,” in FDTC 2013, pp. 77-88, IEEE, 2013.

[4] P.Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L. Alvisi,
"Modeling the effect of technology trends on the soft error rate of
combinational logic," Proc. Intl Conf on Dependable Sys and Networks,
Washington, DC, USA, 2002, pp. 389-398.

[5] A.Barenghi et. al., “Low Voltage Fault Attacks to AES and RSA on
General Purpose Processors,” eprint iacr 130/2010, 2010.

[6] P.Rauzy, S.Guilley, “A formal proof of countermeasures against fault
injection attacks on CRT-RSA,” eprint IACR 506/2013, 2013.

[7] K.Tobich, et.al., “Voltage spikes on the substrate to obtain timing
faults”, Proc. of the 16th Euromicro Conf. on Dig. Sys.Des., 2013.

[8] P.Maurine, “Techniques for EM Fault Injection: Equipments and
experimental results”, in FDTC 2012, Belgium, 2012, pp.3-4.

[9] Microchip “PIC16F631/677/685/687/689/690 20-pin flash-based, 8-bit
CMOS microcontrollers, DS40001262F Microchip, 2015.

[10] A.Barenghi et.al. “Countermeasures against faut attacks on software
implemented AES”, Proc. of WESS 2010, ACM, 2010, pp.1-10.

[11] N.Moro et.al. “Experimental evaluation of two software
countermeasures against fault attacks” IEEE Proc. of HOST 2014, 2014.

[12] EMV Langer Burst power station 202 and ICI HH500-15 LEFT pulse
magnetic field source EM probe, http://www.langer-emv.de

[13] L.Riviere et.al. “High precision fault injections on the instruction cache
of ARMv7-M architectures” IEEE HOST 2015.

[14] A.Cui, R.Housley “BADFET: Defeating modern secure boot using
second-order pulsed electomagnetic fault injection” Usenix workshop on
offensive technologies, WOOT, 2017.

[15] M.Ghodrati “Thwarting electromagnetic fault injection attack utilizing
timing attack countermeasure” MASc Thesis, Advisor P.Schaumont,
Dec 2017.

[16] A.Boyer et.al. “Evaluation of the Near-Field Injection Method at
integrated circuit level” EMC Europe 2014, 2014, pp.1-6.

[17] N.Timmers, Spruyt A., Witteman M. “Controlling PC on ARM using
fault injection” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2016 Workshop on, IEEE, 2016.

